
Ask, Reason, Assist:
Decentralized Robot Collaboration via Language and Logic

Anonymous Author(s)

Helper
Candidate 1

Helper
Candidate 2

Helper
Candidate NCost

ASK REASON ASSIST

Original
Path

Updated
Path

Conflict Detected
“A pallet is blocking aisle1.”

Natural Language Help Request
“Pick up the pallet in aisle1 and drop off at the endcap”

NL-TL Translation with BNF Grammar
φhelp = ⋀[0,H](♢aisle1, ♢endcap,␧(￢endcapuaisle1))

Help Request in TL Spec
(with Guaranteed syntactic validity)

HelpPhi = F(aisle1)& F(endcap)
&G(~endcap Until aisle1)

Confirm Help Proposal with the Lowest Cost

Candidate helper solves MILP
with the updated TL spec

φnew = ⋀[0,H](♢φorig, ♢φhelp, ␧φsafety)

Fig. 1: Overview of the Proposed Framework: A requester broadcasts a natural language help request, which helpers translate into
syntactically valid temporal logic (TL) via a BNF grammar. Then each helper independently solves an updated optimal path via MILP to
assess the cost associated with the help task and proposes help. Finally, the requester selects and confirms the best offer that minimizes the
overall impact to the system. Our framework demonstrates how natural language (NL) can serve as a flexible medium for heterogeneous
multi-robot help-request forum. Using constrained generation with BNF grammar guarantees valid TL translations, while solving the
decentralized MILP optimization problem achieves performance close to a centralized “Oracle” baseline.

Abstract— Increased robot deployment, such as in warehous-
ing, has revealed a need for seamless collaboration among
heterogeneous robot teams to resolve unforeseen conflicts.
To address this challenge, we propose a novel decentralized
framework that enables robots to request and provide help. The
process begins when a robot detects a conflict and uses a Large
Language Model (LLM) to decide whether external assistance is
required. If so, it crafts and broadcasts a natural language (NL)
help request. Potential helper robots reason over the request
and respond with offers of assistance, including information
about the effect on their ongoing tasks. Helper reasoning is
implemented via an LLM grounded in Signal Temporal Logic
(STL) using a Backus–Naur Form (BNF) grammar, ensuring
syntactically valid NL-to-STL translations, which are then
solved as a Mixed Integer Linear Program (MILP). Finally,
the requester robot selects a helper by reasoning over the
expected increase in system-level total task completion time.
We evaluated our framework through experiments comparing
different helper-selection strategies and found that consider-
ing multiple offers allows the requester to minimize added
makespan. Our approach significantly outperforms heuristics
such as selecting the nearest available candidate helper robot,
and achieves performance comparable to a centralized “Oracle”
baseline but without heavy information demands.

I. INTRODUCTION

Modern warehouses and manufacturing sites are complex
ecosystems where heterogeneous multi-robot teams must
coordinate to meet demanding throughput targets. However,
the dynamic nature that makes these mixed fleets effective
also renders them brittle to unforeseen physical and semantic
conflicts. Given the scale of modern-day robot deployments,
a decentralized yet efficient conflict-resolution process is
essential to unlock the full potential of these teams.

Recent advances in foundation models, particularly multi-

modal Large Language Models (LLMs), provides a promis-
ing tool in addressing the first step of this process - identify-
ing and describing the conflict [1]. Paired with an embodied
agent, by processing sensor inputs and an understanding of
robot capabilities, these models can generate a concise Help
Request in Natural Language [2]. Although methods have
been presented to use multi modal LLMs for end-to-end con-
flict resolution in multi-robot settings [3], the plans generated
by foundation models do not provide the safety guarantees
required in environments where humans and robots coexist.
Furthermore, industrial robots frequently operate under strict
time constraints, such as in order fulfillment scenarios where
shipments must be staged at outbound docks by designated
pickup times. Without guarantees on the safety and feasibility
of conflict recovery plans, LLMs alone are insufficient for
ensuring reliable multi-agent conflict resolution in time-
sensitive and safety-critical environments.

One path forward to solving this challenge is to apply
formal methods, such as the verification of Signal Temporal
Logic (STL) and Linear Temporal Logic (LTL) specifica-
tions. STL and LTL tools can guarantee that a robot’s plan
satisfies constraints and have been successfully applied to
multi-robot coordination and reconfiguration tasks [4][5].
Recent work has also explored their integration with LLMs to
enforce safety constraints during task planning [6]. However,
it remains open how to integrate these formal methods
approaches with foundation model reasoning in a way that
enables seamless, safe multi-agent coordination.

A. Related Work

1) Formal Methods for Task and Motion Planning:
Formal methods, such as Temporal Logic (TL), provide a
precise language for specifying robot objectives with tem-
poral and spatial grounding. In particular, Signal Temporal
Logic (STL) is well-suited to robotics as it reasons over
real-valued trajectories with explicit time bounds [7]. In
task and motion planning (TAMP), these requirements are
often formulated as a mixed-integer program (MIP) which
unifies discrete task choices and continuous motion in one
certifiable solver [8]. Our framework builds directly on this
paradigm but differs on where and how formal reasoning is
invoked. Once an LLM translates NL to STL on demand,
each potential helper independently solves a compact MILP
that (i) certifies feasibility and (ii) estimates the marginal cost
of adding the help task given its existing task schedule that
remains to be private. This parallelized approach maintains
the rigorous guarantee provided by formal methods while
avoiding the need for a centralized planner and full disclosure
of potentially proprietary information.

2) Natural Language to Temporal Logic: While temporal
logic is a powerful formal language for expressing con-
straints on task and motion plans, it requires significant
effort and expertise to formulate. As such, a number of
works have sought to automatically translate natural language
(NL) instructions and specifications into temporal logic
(TL) formulas, specifically using LLMs [9]–[13]. However,
they lack guarantees on the accuracy and syntactic validity
of generated temporal logic formulas. Recently, conformal
prediction has been used to quantify the uncertainty of
LLM outputs, and applied towards an accuracy guarantee
for NL to TL [12]. Specifically, an LLM is prompted to
incrementally translate an NL specification, with the LLM
queried multiple times for each translation step. Then, the
frequency of each unique response at each step is used as a
measure of uncertainty, and triggers asking for help from a
human when high uncertainty is detected. Syntactic validity
in this work is addressed by repeatedly sampling from the
LLM with the same prompt and filtering out responses which
contain invalid operators or atomic propositions. We note that
there is no guarantee that any of the sampled responses from
the LLM will be syntactically valid, and that these filtering
rules do not fully capture the syntax rules of temporal logic.
We seek to address this problem in this work.

3) Meta-heuristics in Vehicle Routing Problems: As the
centralized baseline for comparison, assigning a new help
request within a fleet can be formulated as a dynamic Vehicle
Routing Problem (VRP), a long studied subject within the
operations research field [14]. Since exact optimization is
intractable at realistic scales, constructive insertion heuris-
tics (e.g sequential/greedy insertion [15]) provide a feasible
solution promptly and meta-heuristics like Iterated Local
Search (ILS) improve the optimality of the initial solution by
introducing local moves with perturbations to escape local
minima [16]. We implement this centralized hybrid VRP
algorithm (insertion + ILS) as an “Oracle” baseline that can

reshuffle tasks across all robots to minimize the fleet’s overall
makespan. In contrast to this centralized VRP approach, our
framework only requires compact exchanges in NL → TL
→ MILP bids, minimizing the information demand without
sacrificing scalability.

Contributions: We present a framework that enables het-
erogeneous warehouse robots, each subject to local task spec-
ifications, to request and offer assistance in natural language,
while ensuring the safety and feasibility of the resulting
recovery plan through formal verification. In particular, we
make the following contributions:

1) We propose a method to transform natural language
specifications into temporal logic specifications with a
guarantee on validity (Secs. III-A and III-B).

2) We augment LLM agents with spatial and temporal rea-
soning capabilities, therefore making progress towards
realizing guarantees from formal methods (Sec. III-C).

3) We rigorously evaluate our decentralized method
against both simple heuristics and a near-optimal cen-
tralized “Oracle” baseline demonstrating a compelling
trade-off between performance and information de-
mand. (Sec. IV-B).

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider robots operating in parallel on a variety of tasks;
in this work we use warehousing as our canonical example.
We investigate how a system can achieve decentralized
conflict resolution while approaching the global efficiency
of a centralized solution through peer-to-peer interactions
that minimizes the information demand. If a robot detects
a conflict that it cannot resolve on its own, how can
it request and receive help from a fellow robot while
ensuring safety and minimizing impact on the overall
system? We now formalize these notions.

Notation: The reals are R, natural numbers are N, and
integers are Z. To describe functions operating on natural
language, we denote L as the set of all natural language
utterances. Subscripts are indices and superscripts are labels.
We use ← to denote the output of NL reasoning.

World and Robots: We consider a multi-robot system
(MRS) with n robots, and R= {0,1, · · · ,n−1} denoting the
set of all robots. The robots operate in a discrete time grid
world, so robot i is at xi(t) ∈W ⊂ Z2 at time t = 0,1, · · · ,H,
where H ∈N is a finite time horizon. Robot i’s trajectory is
a sequence of its position from time t ∈ [0,H], denoted by

Xi = {xi(t)}H
t=0 ⊆W. (1)

We index a trajectory as Xi(j) = xi(j) at a specific timestep
and Xi(j : k) = {xi(t)}k

t= j for a range. Given trajectory Xi of
duration H, its Manhattan distance is

D(Xi) =
H−1

∑
t=0
∥xi(t +1)− xi(t)∥1. (2)

Each cell is either free space or a static obstacle, a common
setup in modeling multi-robot systems [17]; we denote all
free cells as F ⊆W . Multiple robots can occupy a free cell
concurrently (xi(t) = x j(t) ∈ F is allowed); we assume local

coordination and collision avoidance are handled by lower-
level planning and control. Finally, each robot has an NL
representation of its own capabilities ci ∈ L (e.g., “can lift
pallets” or “max speed 1 m/s”)

Tasks and Schedules: Let Ψ = {ψ1,ψ2, . . . ,ψK} be the
set of K initial tasks to be completed by the system. A
task schedule is a partition of these tasks among the robots,
denoted by S = {Ψ0,Ψ1, . . . ,Ψn−1}, where Ψi ⊂Ψ is the set
of tasks assigned to robot i,

⋃
i∈R Ψi =Ψ. Finally, ψi∩ψ j = /0

for i ̸= j, i.e., no two robots are assigned the same task.
For each robot i, its assigned tasks Ψi are represented as an

STL specification ϕi and path Xi for robot i. All robots must
also obey a global specification1 ϕg. We assume each robot’s
tasks are feasible while, we certify the syntactic validity of
the STL via BNF constrained generation (Sec. III-B).

Makespan: Our goal is for robots to minimize time to
complete their own tasks plus help tasks, which is the
makespan of each robot and the overall system. Consider
robot i, with initial position xi(0) ∈ F and corresponding
STL specification ϕi. If the robot’s trajectory Xi satisfies ϕi,
we write Xi |= ϕi. Note, this expression is a shorthand for
(Xi,0) |= ϕi, meaning we always evaluate the satisfaction of
the trajectory starting from t = 0. We minimize makespan
by finding Xi to take the least time to satisfy ϕi. To aid
in defining the makespan we first define the time to first
satisfaction T (Xi,ϕ)i as

T (Xi,ϕi) = min
t
{t | Xi(0 : t) |= ϕi} . (3)

Note that T (Xi,ϕi) = ∞ if Xi ̸|= ϕi. Then we compute the
makespan M(xi(0),ϕi) ∈ N as

M(xi(0),ϕi) = min
Xi
{T (Xi,ϕi) | Xi(0) = xi(0)} . (4)

That is, the makespan finds a trajectory that minimizes the
time to first satisfaction of ϕi while obeying the robot’s initial
condition. We implement (4) as an MILP solved with Gurobi
[18]. Further details are in Sec. IV.

Communications: We assume robots can send and receive
natural language messages m ∈ L instantaneously and error-
free. We denote mi→ j as a message from robot i to robot j,
and a broadcast message as mi→R.

Conflicts: Each robot can detect a conflict (e.g., using
a VLM based conflict detector as in Fig. 1), which we
denote as a tuple (mc,xc,τc)∈L×W×N containing a natural
language description, a location, and a duration required to
resolve it. We assume xc is resolved when a helper robot
occupies the same cell as the requester for at least τc time
steps; we leave low-level coordination to future work.

Problem. Suppose robot i detects a conflict (mc,xc,τc).
Without using centralized task assignment, we seek to identify
another robot j ∈ R−i = R \ {i} is the set of candidate
helper robots, and plan its motion such that it resolves the
conflict while minimizing the increase in the total makespan
across all robots. That is, create ϕ j such that x j(t) = xc

for all t ′ ∈ [t, t + τc] while minimizing the sum of individual
makespans ∑i∈R M(xi(0),ϕi).

1See example in Sec. -A.1 for actuation limits and obstacles

III. PROPOSED METHOD

In this section, we introduce the main components of our
framework, as depicted in Fig. 1. Concretely, Sec. III-A
describes how a requester robot that requires help generates
a help request and broadcasts it to the multi-robot system.
Each robot in the system then evaluates its capabilities and
availability, and any helper robot with the potential to assist
formulates a help offer in natural language (NL). Then, Sec.
III-B details how each helper translates its help request from
NL to STL, while Sec. III-C describes how each helper
computes an optimal path plan that minimizes total time
impact to the system. Each potential helper then replies to
the requester in natural language with its help offer and
the associated, predicted time impact to the system. Finally,
the requester chooses the helper with the lowest impact and
affirms its selection via a help confirmation message.

A. Generating Help Requests, Offers, and Confirmations
We implement a multi-robot communication protocol for

collaborative conflict resolution using LLMs. This protocol
involves three capabilities: send, receive and broadcast. We
define three types of messages: help requests, help offers,
and help confirmations2.

Help requests are broadcast messages sent by a robot
facing a conflict after determining that it requires help, by
reasoning over the conflict (mc,xc,τc) and its own capabili-
ties ci, conditioned on a prompt pc ∈ L:

mr
i→R−i

← NLR(mc,xc,τc,ci | pc), (5)

where NLR abstractly represents NL reasoning, implemented
with foundation models. Help requests describe the scene,
location, what is required for the conflict to be resolved,
and why the robot cannot resolve the conflict. To ensure
conflict location and requester capabilities are included in
help requests, we use constrained generation [19].

Help offers are sent by potential helpers in response to a
help request. To generate help offers, each robot j reasons
over the help request, its own location, and its capabilities:

mo
j→i← NLR(mr

i→R−i
,x j,c j | ph). (6)

We again use constrained generation to ensure help offers
include information about capabilities. In addition, the help
offer includes the duration it will take robot j to provide help
τh

j (i.e., how long robot i needs to wait), and the additional
time to help relative to completing its original tasks τnew

j (i.e.,
how much robot j is impacted by having to complete the help
request). We compute these durations below in Sec. III-C (see
(12)).

Finally, the requester confirms the lowest-cost help offer
by finding

j⋆ = argmin
j∈R−i

(
τ

h
j + τ

new
j

)
. (7)

The selected helper j⋆ then receives the message ms
i→ j⋆ =

“accept” while all other candidate helpers receive ms
i→ j =

“reject” for all j ̸= j⋆.

2An example help request is in Sec. -B.1 and help offer in Sec. -B.2.

B. Translating Help Proposals to STL Specifications

To translate help proposals from NL to STL, We draw
from a body of recent work on the transformation of natural
language tasks and specifications into temporal logic formu-
las using large language models [9]–[11]. We enhance these
natural language to temporal logic methods by defining a
Backus-Naur form (BNF) grammar, a notation system for
defining formal languages that can be used to constrain the
output of LLMs [20]. Additionally, we finetune the LLM
model using LoRA [21]. Specifically, defining a BNF gram-
mar for STL involves defining unary and binary temporal and
boolean operators, allowed predicates, and text representa-
tions of temporal logic relations. BNF constrained generation
enforces the syntactic validity of generated temporal logic
formulas, allowing us to directly feed LLM outputs into
an STL solver3. However, constrained generation has been
shown to degrade task performance in many cases, i.e. not
“minimally invasive” [22]. As such, we carefully designed
the BNF grammar4 to be sufficiently relaxed as to be “min-
imally invasive”, for example including optional whitespace
and parentheses, and allowing for arbitrary nesting and
recursion, while maintaining the guarantee that the output
can be processed using standard STL parsers. Ultimately,
we generate an STL specification by reasoning over the help
offer message and conflict location, conditioned on a prompt
pSTL and subject to the BNF grammar:

ϕ
h
j ← NLR(mo

j→i,x
c | pSTL,BNF). (8)

C. Solving for Optimal Robot Paths

Suppose an initial, globally near-optimal task schedule
Sorig = {Ψ0, ...,Ψn−1} has been determined. Each candidate
helper robot j ∈ R−i has an original task specification ϕ

orig
j

and has found a corresponding optimal path

Xorig
j = {x j(t) | t = 0, · · · ,M(xi(0),ϕ

orig
j)} (9)

by minimizing Manhattan distance5 and time to satisfy the
task specification (i.e., makespan) while always obeying
global specifications:

Xorig
j = argmin

X
D(X)+T (X ,ϕorig) (10a)

s.t. X |=3ϕ
orig
j ∧2ϕ

g. (10b)

Once the help offer mo
j→i is translated into ϕh

j as in (8), robot
j computes an updated path that both helps and completes
the original tasks:

Xnew
j = argmin

X
D(X)+T (X ,3ϕ

h
j)+T (X ,ϕnew

j) (11a)

s.t. X |= ϕ
new (11b)

ϕ
new
j =3ϕ

h
j ∧3ϕ

orig
j ∧2ϕ

g. (11c)

3Details on how we encode STL specifications can found in the appendix.
4An example BNF grammar can be found in Sec. -A.3.
5We use Manhattan distance to capture the number of movements in a

grid world and improve computation time over solving a Mixed Integer
Quadratic Program (MIQP) with Euclidean Distances.

Helper Pallet Pickup

Helper Pallet Dropoff

Helper’s Original Path

Helper’s Updated Path

Helper Start Position

Help Site

Fig. 2: An example of a reconfigured path. The help site is reached
in 2 time-steps, extending the original path by 2 time-steps for a
total cost τh

j + τnew
j = 4 time-steps.

The term T (X ,3ϕh
j) represents how long the requester must

wait for help, whereas the term T (X ,ϕnew
j) represents the

helper’s time required to complete the help task plus all other
tasks. This encourages the helper to minimize how long the
requester must wait.

We formulate (10) and (11) as Mixed Integer Linear
Programs (MILPs) by defining predicates in the STL formula
as binary variables over discrete time steps, and solve the
formulated MILPs with Gurobi [18].

Finally, when crafting a help offer, robot j reports the
total time it will take to help and the additional time to help
relative to its original tasks:

τ
h
j = M(x j(0),ϕh

j) (12)

τ
new
j = M(x j(0),ϕnew

j)−M(x j(0),ϕ
orig
j). (13)

Note that, in our implementation, τh
j and τnew

j are computed
as a byproduct of solving (11), instead of solving new MILPs
to compute these makespans.

Importantly, our method does not alter the original task
schedule Sorig; only the chosen helper j augments its plan
with the help task. This contrasts with an approach using
a centralized Oracle (c.f., [15], [16]), which is free to re-
allocate any task from any ψk to any other robot to minimize
the total system cost which is the sum of the individual
makespan, ∑i∈R M(xi(0),ϕi). This means that our method
sacrifices optimality for decentralization, as we assess next.

IV. EXPERIMENTS

To demonstrate the efficacy of the proposed end-to-
end framework for multi-robot collaboration, we isolate
and evaluate its two constituent modules: the natural lan-
guage–to–temporal logic translation component and the tem-
poral logic–to–task plan generation component. Each module
is quantitatively compared against state-of-the-art methods in
natural language–to–temporal logic translation and vehicle
routing, respectively.

All experiments were performed using Python6 on a
desktop computer with a 32-core i9 CPU, 32 GB RAM, and
an NVIDIA RTX 4090 GPU.

A. Experiment 1: Natural Language to Temporal Logic

In this experiment, we evaluate our method for trans-
forming natural language (NL) to temporal logic (TL) using
BNF constrained generation. We implement our method
with Gemma 3 12B LLM using the llama.cpp library
for BNF constrained generation and LLaMA-Factory [23]
for finetuning. The BNF grammar is included in the LLM
prompt and as a constraint.

Hypothesis: We hypothesize that our method demonstrates
comparable translation accuracy to existing baselines on a
large and diverse data set of NL-TL pairs, with a strict
guarantee on the validity of TL formulas, while running
on a significantly smaller LLM (Gemma 3) which can be
deployed onboard a robot with a single consumer GPU.

Experiment Design: To benchmark NL to TL translation
performance, we use the dataset presented in [9], which
consists of 7,500 pairs of natural language sentences and
corresponding signal temporal logic (STL) formulas in the
context of navigation tasks. 6,000 pairs are used for finetun-
ing, and 1,500 pairs are used for evaluation.

We compare our method to several ablated variants and to
a GPT-4 baseline presented in [9]. The ablations we consider
include variants without the grammar constraint, without the
grammar prompt, and with combinations thereof, allowing
us to isolate the contributions of each component of our
method. Our method and each ablation are evaluated with 5
and 20 “few-shot” examples of natural language tasks with
accurate temporal logic translations included in the prompt
to the LLM, with 500 NL-TL pairs randomly sampled from
the dataset. Each evaluation is rerun 3 times, with resampled
few-shot examples and NL-TL pairs. In our approach, both
the BNF grammar and few shot examples are included in the
prompt, and the BNF grammar is enforced during decoding
using llama.cpp’s constrained generation. Results with
constrained generation are not presented for GPT-4, as this
model can only be accessed through the OpenAI API, which
does not allow for a BNF grammar constraint to be specified.

Metrics: We measure Validity as the percentage of gen-
erated formulas that are syntactically correct and Accuracy
as percentage of valid generated STL formulas logically
equivalent to true STL formulas from the dataset. Accuracy
is computed on the mutually valid set of generated formulas
across all ablations. The logical equivalence and syntactic
correctness of STL formulas are checked using the Spot
library [24]. Note we also measure Inference Time as average
runtime per NL-STL pair (ms), in Appendix -C.

Results and Discussion: The results are summarized in
Table I. Our method achieves 100% formula validity in all
cases with no loss in accuracy due to constrained generation,
confirming our hypothesized guarantee. Additionally, we

6Code and Fine-tuned LLM model available at:
https://github.com/ask-reason-assist/
ask-reason-assist-codebase

show improved translation accuracy in the navigation dataset
with a significantly smaller LLM.

For each STL formula which was incorrectly translated
from natural language by the LLM, we check containment
to determine the severity of the failure. In other words,
if the true STL formula is contained in the STL formula
generated by the LLM, then every TAMP that satisfies the
LLM formula will also satisfy the true formula, and therefore
the constraint expressed in the natural language will not be
violated. Formally,

ϕ
LLM =⇒ ϕ

true ⇐⇒ ∀ψ ∈Ψ : ψ |= ϕ
LLM⇒ ψ |= ϕ

true.
(14)

We report the percentage of LLM generated STL formulas
which contain the true STL formula in Table II.

See Table III for the inference time of our method and
each ablation.

Ex. Method Variant Validity (%) Accuracy (%)

5

Gemma F + P + C (Ours) 100.0 ± 0.00 98.98 ± 0.17
F + P 99.8 ± 0.45 98.98 ± 0.17
F 99.0 ± 1.22 84.97 ± 8.65

GPT-4 F + P 100.0 ± 0.00 62.82 ± 3.66

20

Gemma F + P + C (Ours) 100.0 ± 0.00 97.58 ± 1.16
F + P 99.67 ± 0.01 97.58 ± 1.16
F 99.60 ± 0.04 93.73 ± 2.40

GPT-4 F + P 100.0 ± 0.00 92.73 ± 3.00

TABLE I: Ablation study on NL to TL with varying number
of few-shot examples. F, P, and C refer to few shot prompt-
ing, inclusion of the BNF grammar in the prompt, and the
BNF grammar constrained generation respectively.

Ex. Method LLM =⇒ True (%)

5

Gemma F + P + C (Ours) 99.45 ± 0.24
F + P 99.45 ± 0.24
F 87.02 ± 9.19

GPT-4 F + P 74.13 ± 6.62

20

Gemma F + P + C (Ours) 99.25 ± 0.23
F + P 99.25 ± 0.23
F 97.52 ± 0.89

GPT-4 F + P 95.20 ± 6.64

TABLE II: Containment checking of LLM generated STL
formulas for each NL to TL ablation. If the true STL
formula is contained in the LLM-generated STL formula,
the constraint specified in the natural language will always
be satisfied.

B. Experiment 2: Mobile Robot Blocked by a Pallet

In our second experiment, we compare our decentralized
framework to a centralized “Oracle” in a scenario where
forklift robots respond to a help request from a mobile robot
prompted by the scene description mc = “A pallet is blocking
the entrance to the picking aisle.” Each forklift robot j ∈H

then evaluates whether it can handle this additional task
(moving the obstructing pallet) on top of its existing pick-
and-place (PNP)7 jobs by updating its STL specification
ϕ

orig
j . The help task, ϕh

j , is similarly encoded as a PNP job
where the forklift must travel to the help site, pick up the

7Our STL specification of a PNP job is in Sec. -A.2.

https://github.com/ask-reason-assist/ask-reason-assist-codebase
https://github.com/ask-reason-assist/ask-reason-assist-codebase

obstructing pallet, and place the pallet in the nearest free cell
xadj = argminx{∥x− xc∥1}.

Hypothesis: We hypothesize that our decentralized frame-
work, where each potential helper solves for its updated
TL specification via MILP in parallel, will achieve system
efficiency comparable to a near-optimal “Oracle” with full
system knowledge. We expect our method to significantly
outperform myopic, distance-based heuristics, even when
such heuristics are coupled with a central optimizer.

Experiment Design and Baseline: We conducted 100
simulation trials with randomly chosen help-site locations. To
ensure a fair comparison within each trial, a single, consistent
starting scenario was established for the fleet.

This involved spawning six forklift robots at random initial
positions and distributing total of twelve PNP tasks among
the fleet according to a global schedule, Sorig. We pre-
compute the schedule using the “Oracle” baseline to find
a near-optimal solution to the MRTA problem. When a help
task ϕh arises, the Oracle finds a new via ILS metaheuristics,
as detailed8 in [16].

Our method and the three distinct baselines were then
evaluated against this identical initial setup: (B1) The ILS-
based global planner “Oracle”, (B2) the closet forklift to the
help site solves for the optimal path via MILP, and (B3)
a hybrid approach where help task is assigned to the closet
agent, but the Oracle is allowed to re-optimize all other tasks.

Results and Discussion: Fig. 3 summarizes our findings.
The Centralized Oracle (B1) added an average of 4.49 time-
steps to the system by inserting the help task, establishing
a strong performance benchmark. Our decentralized method
achieved a highly competitive result of 5.47 steps on average
with a standard deviation of 3.32 time steps, supporting
that informed local optimization captures the majority of the
performance gains of a centralized system without the need
for global task reassignment or heavy information demand.
Importantly, the average Gurobi model solve time was
5.3 seconds with 30 discretized time horizon, demonstrating
computational practicality for real-time deployment.

On the other hand, our optimal cost approach on average
provides 46% and 53% efficiency gains over B2 and B3
respectively. We observe that the inter-dependencies in PNP
jobs make distance-based heuristics (B2-B3) suboptimal,
consistent with previous literature in operations research
[25]. Furthermore, an initial myopic decision (B3) can con-
strain the overall system’s optimality from which even a pow-
erful optimizer cannot recover efficiently [26]. In contrast,
our method explicitly avoids such myopia by reasoning over
future task interactions.

V. DEMONSTRATIONS

We now demonstrate the utility of NL in conflict resolution
on three complex warehouse tasks. These complement our
experiments, which stress-test components of our method.
Here, we illustrate the practicality of our overall framework
by implementing it in a high-fidelity physics-based Unity

8The algorithm table can be found in Appendix -D

Fig. 3: Comparison of total time-steps added to the system under
different methods tested in Sec. IV-B. Our decentralized method
tracks the Oracle solution within 18% while significantly outper-
forming the distance based heuristics (B2) and hybrid approach
(B3).

simulator. In particular, we integrate our NL-to-TL trans-
lation module with a MILP-based TAMP mechanism for
executing sequentially nested tasks, alongside local collision
avoidance and an A* path planner for realistic motion
plans. Full videos of each demonstration are available on
our project website https://ask-reason-assist.
github.io.

Demo 1: Pallet Cleanup: First, we revisit the pallet-
blocking task from the second experiment, where forklift
robots must help a mobile robot. The NL help request, “A
pallet is blocking the aisle”, is translated into a syntactically
valid TL specification for the MILP solver based TAMP
module updates the optimal forklift agent’s task schedule.
This demo showcases a complete rollout of the framework
to complement the experiment in Sec. IV-B.

Demo 2: Warehouse Kitting: Our second scenario is a
warehouse kitting task, a common workflow in fulfillment
operations. Here the NL input is, “Eventually pick up an
item from Aisle A and Aisle B and Aisle C.” Our NL-TL
module successfully translates this into a semantically correct
and syntactically valid TL formula:

ϕ
h =

∧
[0,H]

(
3xpick A,3xpick B,3xpick C

)
(15)

Our system uses this formula to compute the optimal se-
quence of visits to minimize the total makespan added to the
system. This demo showcases our system’s ability to handle
unordered conjunctive goals (i.e., tasks that can be done in
any order), as the LLM correctly translates the semantics that
the first three APs can become true in any order.

Demo 3: Sequential Tool Retrieval: In our final, most
complex scenario, the NL help request is, “First visit the front
office to pick up the high fidelity scanner, then travel to the
help site to scan the damaged good, and finally navigate back
to the front office to return the scanner.” This is translated
into the nested STL formula:

ϕ
1 =

∧
[0,H]

(
3xpickup Scanner,3xscan,2(¬xscanUxpickup Scanner)

)
ϕ

h =
∧
[0,H]

(
3ϕ

1,3xreturn Scanner,2(¬xreturn ScannerUϕ
1)
)

https://ask-reason-assist.github.io
https://ask-reason-assist.github.io

“A pallet is blocking entry… help clear the obstruction”

Case 1:
Pallet Cleanup

A B C

Case 3:
Sequential Tool Retrieval

φ1 = ⋀[0,H](♢A, ♢B,�(￢ B u A))

φhelp = ⋀[0,H](♢φ1, ♢C, �(￢ C u φ1)

φhelp = ⋀[0,H](♢A, ♢B,♢C)

Case 2:
Warehouse Kitting

“Pick up scanner at office, scan pallet for damages and finally
return the scanner”

A: Pick Up Pallet
B: Dropoff at End Cap

A: Pick Green Kit
B: Pick Blue Kit
C: Pick Red Kit

A: Retrieve Scanner
B: Scan Pallet
C: Return Scanner

φhelp = ⋀[0,H](♢A, ♢B,�(￢BuA))

“Pick Green Kit, Blue Kit and Red Kit”

Fig. 4: Unity-based demonstrations of our NL-to-TL decentralized framework. (Left) Pallet Cleanup: a forklift responds to an NL request
to clear a blocked aisle, updating its MILP plan to integrate the help task. (Center) Warehouse Kitting: unordered conjunctive goals
(“pick A,B,C”) are translated into a concise TL formula allowing flexible task sequencing. (Right) Sequential Tool Retrieval: strict
temporal ordering (“first-then-finally”) is captured by the nested TL specification, enabling execution of complex multi-step tasks. These
demonstrations showcase our end-to-end framework—where each helper robot can translate natural language into valid temporal logic
and update its MILP plan—running in a realistic Unity warehouse simulator.

Our NL-to-TL translation module correctly interprets the
keywords ”First, then and finally” to enforce a strict order in
which each AP holds true, highlighting how our framework
enables a robot to autonomously leverage the expressiveness
of complex TL specifications. This demo showcases the
framework’s practicality for capturing strict sequential and
nested temporal dependencies from natural language.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel framework for robots to
request and receive help for decentralized conflict resolution.
Our method lets robots coordinate and reason over their
own capabilities in natural language (NL) while reasoning
over their motion plans and tasks in formal temporal logic
(TL). We achieve this via a method for converting between
NL and TL with guaranteed validity, thereby giving LLM
agents spatial and temporal reasoning. Through experimental
evaluation, we find that our method can resolve conflicts
while maintaining overall system performance similar to
a centralized Oracle baseline. Furthermore, demonstrations
across several robot morphologies and capabilities show how
our method successfully combines the flexibility of NL with
the formality of TL. That said, our method still has limita-
tions to address in future work. First, we assume conflicts
are detected correctly. Second, we have no considered low-
level motion planning or physics in helper or requester
capabilities. Third, we have only used NL in a specific help
request problem setting, but it remains open how NL can
integrate into broader multirobot operations.

REFERENCES

[1] R. Sinha, A. Elhafsi, C. Agia, M. Foutter, E. Schmerling, and M.
Pavone, “Real-time Anomaly Detection and Reactive Planning with
Large Language Models,” arXiv preprint arXiv:2407.08735, 2024.

[2] J. Chen, C. Yu, X. Zhou, et al., “Emos: Embodiment-aware het-
erogeneous multi-robot operating system with llm agents,” arXiv
preprint arXiv:2410.22662, 2024.

[3] Y. Kato, T. Yoshida, Y. Sueoka, et al., “Design of a Multi-robot
Coordination System based on Functional Expressions using Large
Language Models,” in 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), IEEE, 2024, pp. 3447–3454.

[4] M. Guo and D. V. Dimarogonas, “Multi-agent Plan Reconfiguration
under Local LTL Specifications,” The International Journal of
Robotics Research, vol. 34, no. 2, pp. 218–235, 2015.

[5] D. Sun, J. Chen, S. Mitra, and C. Fan, “Multi-agent motion planning
from signal temporal logic specifications,” IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 3451–3458, 2022.

[6] Z. Yang, S. S. Raman, A. Shah, and S. Tellex, “Plug in the Safety
Chip: Enforcing Constraints for LLM-driven Robot Agents,” in
2024 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2024, pp. 14 435–14 442.

[7] C. Belta and S. Sadraddini, “Formal Methods for Control Synthesis:
An Optimization Perspective,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 2, no. 1, pp. 115–140, 2019.

[8] V. Kurtz and H. Lin, “Mixed-integer Programming for Signal Tem-
poral Logic with Fewer Binary Variables,” IEEE Control Systems
Letters, vol. 6, pp. 2635–2640, 2022.

[9] Y. Chen, R. Gandhi, Y. Zhang, and C. Fan, “Nl2tl: Transforming
Natural Languages to Temporal Logics using Large Language
Models,” arXiv preprint arXiv:2305.07766, 2023.

[10] F. Fuggitti and T. Chakraborti, “NL2LTL–a Python Package for
Converting Natural Language (NL) Instructions to Linear Temporal
Logic (LTL) Formulas,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 37, 2023, pp. 16 428–16 430.

[11] A. Mavrogiannis, C. Mavrogiannis, and Y. Aloimonos, “Cook2LTL:
Translating Cooking Recipes to LTL Formulae using Large Lan-
guage Models,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA), IEEE, 2024, pp. 17 679–17 686.

[12] J. Wang, D. S. Sundarsingh, J. V. Deshmukh, and Y. Kantaros,
“ConformalNL2LTL: Translating Natural Language Instructions
into Temporal Logic Formulas with Conformal Correctness Guar-
antees,” arXiv preprint arXiv:2504.21022, 2025.

[13] Y. Fang, Z. Jin, J. An, H. Chen, X. Chen, and N. Zhan, “En-
hancing transformation from natural language to signal temporal
logic using llms with diverse external knowledge,” arXiv preprint
arXiv:2505.20658, 2025.

[14] G. B. Dantzig and J. H. Ramser, “The Truck Dispatching Problem,”
Management science, vol. 6, no. 1, pp. 80–91, 1959.

[15] M. M. Solomon, “Algorithms for the Vehicle Routing and Schedul-
ing Problems with Time Window Constraints,” Operations research,
vol. 35, no. 2, pp. 254–265, 1987.

[16] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,”
in Handbook of metaheuristics, Springer, 2003, pp. 320–353.

[17] R. Stern, N. Sturtevant, A. Felner, et al., “Multi-agent Pathfinding:
Definitions, Variants, and Benchmarks,” in Proceedings of the
International Symposium on Combinatorial Search, vol. 10, 2019,
pp. 151–158.

[18] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual,
2024.

[19] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Prompting is
Programming: A Query Language for Large Language Models,”
Proceedings of the ACM on Programming Languages, vol. 7,
no. PLDI, pp. 1946–1969, 2023.

[20] B. Wang, Z. Wang, X. Wang, Y. Cao, R. A Saurous, and Y. Kim,
“Grammar Prompting for Domain-specific Language Generation
with Large Language Models,” Advances in Neural Information
Processing Systems, vol. 36, pp. 65 030–65 055, 2023.

[21] E. J. Hu, Y. Shen, P. Wallis, et al., “Lora: Low-rank adaptation of
large language models.,” ICLR, vol. 1, no. 2, p. 3, 2022.

[22] L. Beurer-Kellner, M. Fischer, and M. Vechev, “Guiding LLMs
the Right Way: Fast, Non-invasive Constrained Generation,” arXiv
preprint arXiv:2403.06988, 2024.

[23] Y. Zheng, R. Zhang, J. Zhang, et al., “Llamafactory: Unified
efficient fine-tuning of 100+ language models,” in Proceedings of
the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 3: System Demonstrations), Bangkok, Thailand:
Association for Computational Linguistics, 2024.

[24] Alexandre Duret-Lutz, E. Renault, M. Colange, et al., “From
Spot 2.0 to Spot 2.10: What’s New?” In Proceedings of the 34th
International Conference on Computer Aided Verification (CAV’22),
ser. Lecture Notes in Computer Science, vol. 13372, Springer, Aug.
2022, pp. 174–187.

[25] R. De Koster, T. Le-Duc, and K. J. Roodbergen, “Design and Con-
trol of Warehouse Order Picking: A Literature Review,” European
Journal of Operational Research, vol. 182, no. 2, pp. 481–501,
2007.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,
Introduction to algorithms. MIT press, 2022.

APPENDIX

A. Encoding STL Specifications

We propose a lightweight interface to express naviga-
tional tasks as STL specifications. Inspired by stlpy [8],
our method emphasizes extracting spatial propositions and
decoupling temporal constraints. We provide an illustrative
example here. Consider encoding “Visit Aisle 1 at least once
before time T while avoiding obstacles,” in STL:

ϕ
spec =2[0,H]¬Obstacle∧3[0,T] Aisle1 (16)

where Aisle1 and Obstacle are atomic propositions (AP) tied
to the corresponding world coordinates (true when the agent
is in the region). We specify the time horizon as

model.spec = F(aisle1) & G(NOT(obstacle))
model.T = T

1) Global STL Specification: Each robot is subject to
global safety and actuation constraint. For example, all
ground vehicles must avoid obstacle cells and can only move
one grid space in any cardinal direction):

ϕ
global =2(¬Obstacle∧Lactuation) (17)

2) Pick-and-Place (PNP) Tasks as STL Specifications:
We create a PNP specification as

ϕ1 = (¬xplace U[0,H] x
pick)

(Robot must pickup the pallet before placing it)

ϕ2 =2[0,H](x
pick→ (¬xothersU[0,H]x

place)

(Pallet picked up must be placed before starting other tasks)

ϕ3 =3[0,H]x
place

(Pallet is eventually placed within time horizon H)

ϕpnp(xplace,xpick) = ϕ1∧ϕ2∧ϕ3

3) Example STL BNF Grammar:

root ::= ws expr ws
expr ::= term (binary-op term)*

term ::= atomic-formula | unary-op ws "(" ws expr
ws ")" | unary-op ws atomic-formula | "˜"
ws term | "(" ws expr ws ")"

predicate-name ::= "go_to_charger" | "
go_to_rack_A"

atomic-formula ::= predicate-name | "(" ws
predicate-name ws ")"

ws ::= [\t\n]*

binary-op ::= ws ("&" | "|" | "->" | "U") ws
’&’ (and): both propositions must be true
’|’ (or): at least one predicate must be true
’->’ (implies): if first predicate is true,

then second predicate must be true
’U’ (until): first predicate must be true at

least until second predicate is true

unary-op ::= "G" | "F"
G (globally): Predicate must always be true at

every timestep
F (eventually): Predicate must be true at some

time in the future

B. Natural Language

1) Example Help Request:
Mobile Robot ID 1:
“A pallet is blocking the aisle at location (1, 4). Assistance
is required to move the pallet. Pick up pallet at (1,4) and
drop it off at the closest free drop zone.”

2) Example Help Offer:
Forklift ID 3:
“I can help you in 5 minutes, but it will add 8 minutes to my
overall makespan.”

C. Experiment I Inference Time Results

Examples Method Variant Inference Time (ms)

5

Gemma F + P + C (Ours) 801.6 ± 36.2
F + P 583.4 ± 28.2
F 410.2 ± 9.2

GPT-4 F + P 803.7 ± 30.3

20

Gemma F + P + C (Ours) 1191.7 ± 14.1
F + P 974.9 ± 2.5
F 414.9 ± 3.9

GPT-4 F + P 2736.9 ± 25.2

TABLE III: Inference times for NL-to-TL method variants
with varying numbers of few-shot examples.

D. Oracle Baseline with the ILS Algorithm

Algorithm: Oracle ILS
Input: Cost function J, Neighborhood N
Output: Near-optimal schedule S∗
1: S0,S,S∗← GreedyInsertion(J)
2: for k = 1 to max iterations do:
3: Scand← Perturb(S) // Perturbation Step
4: S′← LocalSearch(Scand,N) // Local Search Step
5: if J(S′)< J(S) or rand() < P(S′,S) then:
6: S← S′ // Acceptance Criterion
7: if J(S)< J(S∗) then:
8: S∗← S
9: return S∗

	Introduction
	Related Work
	Formal Methods for Task and Motion Planning
	Natural Language to Temporal Logic
	Meta-heuristics in Vehicle Routing Problems

	Preliminaries and Problem Statement
	Proposed Method
	Generating Help Requests, Offers, and Confirmations
	Translating Help Proposals to STL Specifications
	Solving for Optimal Robot Paths

	Experiments
	Experiment 1: Natural Language to Temporal Logic
	Experiment 2: Mobile Robot Blocked by a Pallet

	Demonstrations
	Conclusion and Future Work
	Encoding STL Specifications
	Global STL Specification
	Pick-and-Place (PNP) Tasks as STL Specifications
	Example STL BNF Grammar

	Natural Language
	Example Help Request
	Example Help Offer

	Experiment I Inference Time Results
	Oracle Baseline with the ILS Algorithm

